Morningside Ministries at The Effect of Pulsed Xenon Ultraviolet Disinfection and Enhanced Chemical Disinfection of Surfaces on Incidence and Recurrence of The Vanor *Clostridium difficile* Cases within a Skilled Nursing Facility Marjorie Wiltshire, RN¹; Sarah Simmons, DrPH²; Charles Dale, BA²; Mark Stibich, MHA, PhD²; Julie Stachowiak, MIA, PhD².

Abstract

The role of the environment in infection transmission in longterm care facilities may be greater than in acute care settings. Patient-to patient contact and extended length of stay add increased colonization pressure of common hospital associated pathogens, such as *Clostridium difficile* (*C. difficile*). Because patient rooms can be inhabited for weeks to months at a time, thorough disinfection remains a challenge for environmental services. With the goal of preventing hospital-acquired (HA) C. *difficile* infection and recurrence, a skilled nursing facility implemented pulsed xenon ultraviolet disinfection (PX-UV) in order to enhance environmental disinfection practices.

Incident and recurrent *C. difficile* infection was defined using NHSN definitions. Three prevention programs were implemented: staff retraining on hand hygiene practices was conducted in June/July of 2014, followed by the implementation of sodium hypochlorite cleaning in August. No immediate change in infection rates were identified with these two interventions, so ultraviolet disinfection using a pulsed-xenon disinfection robot was added at the start of September 2014. PX-UV was performed in all isolation rooms on a daily basis, as well as in common areas. Bleach cleaning continued in isolation rooms daily, and at patient discharge.

In the 8 month period prior to PX-UV implementation, the number of HA-*C. difficile* cases was 30, with 22 of these being recurrences. Following the implementation of PX-UV, the number of HA-*C. difficile* cases was 8, with 5 being recurrences. This represents a statistically significant reduction of 76.8% (p=0.03).

The success of this intervention could be a result of high environmental disinfection compliance, driven by the ease of integration of the PX-UV system and hypochlorite wipes by patients and staff into daily hospital operations within the long term care setting.

References

1. Sitzlar B, Vajravelu RK, Jury L, Donskey CJ, Jump RL. Environmental decontamination with ultraviolet radiation to prevent recurrent Clostridium difficile infection in 2 roommates in a long-term care Facility. Infect Control Hosp Epidemiol 2012;33:534-6.

2. Aslam S, Hamill RJ, Musher DM. Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet 2005;5:549-57.

3. McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol 2002;97:1769-75.

4. McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of saccharomyces boulardii in combination with standard antibiotics for clostridium difficile disease. JAMA 1994;271:1913-8.

¹[Morningside Ministries, San Antonio, TX], ²[Xenex Disinfection Services, San Antonio, TX]

Table 1. Comparison of HA-C. difficile infection rates and cases before and after the implementation of PX-UV and sodium hypochlorite wipes.

	# of months	HA-CDI cases	HA- CDI recurrent cases	HA-CDI rate per 10,000 pt. days	% change	p-value
Baseline	8	30	22	9.18	-76.8%	0.03
Intervention	8	8	5	2.13		

Figure 1. HA-C. difficile infection rate, by month, as a result of enhanced environmental disinfection practices. Rates include incident and recurrent infections, presented per 10,000 patient days.

Background

- occupancy risk.
- ✓ Following initial acquisition, this recurrence risk can increase 20%, 45% and 65% after 1, 2 and more than 2 episodes, respectively.
- ✓ Pulsed xenon ultraviolet disinfection (PX-UV) has been linked to reductions in HA-C. *difficile* infection rates in acute care settings.

Methods

- ✓ A C. difficile infection is considered hospital acquired when clinical symptoms are present and the patient has GHD/EIA positive laboratory results.
- ✓ One PX-UV system was implemented from September 2014 through April 2015 as an adjunct to sodium hypochlorite wipes. PX-UV was performed in all isolation rooms on a daily basis, as well as in common areas. Bleach cleaning continued in isolation rooms daily, and at patient discharge.
- ✓ A non-parametric, two sample Wilcoxon rank-sum test (Stata Corp, College Station, TX) was used to identify significant changes in incident and recurrent infection rates.

Results

- implementation.

Discussion

long-term care setting.

✓ HA-C. difficile infection can be linked to environmental contamination and prior room

✓ Morningside Ministries at The Manor is a 190-bed skilled nursing facility in San Antonio, TX, with length of stay ranging from 5 to 100 days.

 \checkmark HA-C. difficile decreased 76.8% house wide (p=0.03) within the 8 month intervention. ✓ 4 of the 8 total post-intervention cases occurred within the first month of

✓ Following September 2014, only 4 HA-*C. difficile* infections (2 recurrent) occurred within the final 7 intervention months.

✓ The simultaneous implementation of PX-UV with sodium hypochlorite wipes limits the ability to isolate the effect of one intervention alone. A bundled approach was necessary in this case in to adhere to accepted *C. difficile* outbreak protocols. This study provides additional evidence that enhanced environmental disinfection has the potential to drastically reduce HA – C. difficile incidence and recurrence within the